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A new method for calculating the hyperspherical functions 
for the quantum mechanics of three bodies 

S Marsh?$ and B Buck 
Department of Theoretical Physics, 1 Keble Road, Oxford, England 

Received 18 February 1982 

Abstract. Using the shift operators of Hughes for the group SU(3) in an O(3) basis, a 
simple method is developed to obtain the three-body hyperspherical functions of a definite 
symmetry for any angular momentum in a given SU(3) representation. 

1. Introduction 

The method of solution of the quantum mechanical three-body problem based on the 
expansion of the wavefunction in terms of hyperspherical functions has been used in 
recent years in a variety of problems in nuclear, molecular and elementary particle 
physics (e.g. Ballot and Fabre de la Ripelle 1969, Erens 1971, Fray 1980, Mandelzweig 
1980, Richard 1979, Zickendraht 1972), but its wider acceptance seems to have been 
hindered by the practical difficulties in defining functions of a given symmetry with 
angular momentum greater than two. 

The problem is that the hyperspherical functions are representations of the group 
SU(3), but for physical reasons we wish them to be classified according to the total 
angular momentum and symmetry under particle interchange. As is well known 
(Racah 1949), the representations D(L) of O(3) may occur several times in a rep- 
resentation (A, @) of SU(3). No physically relevant operator has been found to resolve 
this degeneracy (Pustovalov and Simonov 1967, Pustavalov and Smorodinsky 1970), 
and it considerably complicates the solution of the differential equations defining the 
hyperspherical functions. 

The group theoretical aspects of the problem have been studied extensively by, 
for example, Racah (1949,1962), Bargmann and Moshinsky (1960,1961), Levy- 
Leblond (1965, 1966, Levy-Leblond and Levy-Nahas 1965), Dragt (1965) and 
Simonov (1966). The latter authors developed a group theoretical approach to 
calculating the hyperspherical functions forming a complete normalised orthogonal 
set on the six-dimensional unit sphere. However, this method becomes difficult in 
practice even for small values of L. Nyiri and Smorodinsky (1969, 1971, 1979) used 
a generalised Fourier transform method to produce general expressions for functions 
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classified by the internal angular momenta, but they did not proceed to an orthogonal 
specification of these functions. Hughes (1973a, b) introduced the shift operators and 
showed that the SU(3) state labelling problem could be solved, in principle, and an 
orthogonal basis derived. Most recently, del Aguila and Doncel (1980) reverted to 
Dragt’s method of calculating the functions by factorising the angular part of a set of 
harmonic oscillator states. They tabulated these functions for some representations 
with some states up to L = 4. 

The alternative approach of trying to solve the Schrodinger equation directly was 
first attempted by Zickendraht (1965), who obtained expressions for states with 
L = 0, 1 ,2  in terms of hypergeometric functions. Whitten and Smith (1968) also 
developed a general method of solution but this is very cumbersome. They did, 
however, suggest the general form of the solutions as derived by Nyiri and Smorodinsky 
(1971), though they were unable to evaluate the numerical coefficients. Mayer (1975) 
introduced an algebraic approach with a different form for the general solution, but 
again only calculated up to L = 2. 

In this paper, we combine the group theoretical and coordinate space approaches 
and derive the shift operators of Hughes in a coordinate representation. We then 
adopt the general expression for the hyperspherical harmonics and use the expressions 
for the shift operators to derive simple relations between the numerical coefficients 
in the general expression. These may be rapidly evaluated by computer to provide 
not only the hyperspherical functions but also the SU(3) Clebsch-Gordan coefficients. 

The layout of the paper is as follows. In § 2 we introduce the notation and define 
the hyperspherical coordinates and the general form of the functions. In § 3 we review 
the work of Hughes and in 04 derive the coordinate representation of the shift 
operators. These are applied in 9 5 to rederive some of the general formulae for small 
values of L. In § 6 we describe the calculation of the numerical coefficients in the 
general expression, and supply tables for the SU(3) representations of definite sym- 
metry up to a global angular momentum value of 2N = 6, where we have introduced 
N for future convenience. 

2. The hyperspherical coordinates 

We specialise the many-body theory of Buck et a1 (1979) to the three-particle case. 
Let the position vectors of the particles be X, (n = 1,2,3) and assume that the 

particles are of equal mass (the generalisation to unequal masses is simple: see Buck 
et a1 (1979)). Then define the centre-of-mass coordinates 3R = X, and the relative 
position vectors r, = X, - R so that 

C r , = O  

We now write r, = p l ~ l n ~ l + p 2 v 2 n ~ 2  where p1 and p2 are the square roots of the 
quadrupole eigenvectors in the principal axis frame defined by the orthonormal vectors 
sl, sz and s3 = s1 x sz. The vectors tcl and uz are unit orthonormal vectors in the particle 
label space, satisfying 

The last two conditions are equivalent to the centre-of-mass constraint (1). 
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2 1/2 We introduce the hyper-radius p = (X, r , )  and two internal angles 8 and 4 to 
parametrise pl, p ~ ,  v1  and vz giving 

with 0 =s e s T and 0 ~4 s 217. 
Let P ( i j )  interchange particles i and j :  then it can be seen that 

under P( 12) e + 2 r - e ,  ~ b + 2 ~ - 4 ,  

under P(23) e + 2 r - o ,  ++-zr-#, 

under P(31) e + 2r - e, + ++4. 

2 

We may further parametrise the principal axes s l ,  s2 in terms of Euler angles 
fi = (CY, p, y ) ,  giving the orientation with respect to a space fixed frame el, e2, e3 as 
follows. 

Define 

k, l  = r ( e l  * iez)/ J2, ko = e3, 
.- 

t,l = ~ ( s 1  *iis2)/J2, to = s3. 

Then 

km =CDimc(Cl)tm, 
m’ 

giving, on inversion, 

slx = -sin CY sin y + cos CY cos p cos y etc. 

Note that we use a convention for the D function which is the complex conjugate 

As in Zickendraht (1969,  we may derive an expression for the six-dimensional 
of that used by Brink and Satchler (1979). 

Laplacian, and writing the hyperspherical harmonic as 

we obtain the defining equation for the functions grzw(e): 

+[(L-K + ~ ) ( L - K  + ~ ) ( L + K ) ( L + K  - i ) ~ ~ ’ ~ g ~ ; ~ ~ ( e ) }  (2) 

where 2 N  is the global (grand) angular momentum, n is a quantum number related 
to the symmetry of the states, L is the angular momentum of the system with projection 
K in the body fixed frame, and w is the fifth quantum number needed to resolve the 
remaining degeneracy of the states. N and n define an SU(3) representation given 
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in terms of the normal (A, p )  form by 

A=N+n,  p = N - n .  

For states of positive parity N = 0, 1 , 2  . . . . For states of negative parity N = $, 3, 
z . .  . while n = - N ,  - N + l , .  , . , N-1 ,  N. 

States which are totally symmetric or antisymmetric under particle interchange 
correspond to n = 0 , 3 , 6  . . . or to n = p ,  5, . . . for positive and negative parity states 
respectively. Other values of n give states of mixed symmetry. 

5 

3 9  

3. The shift operators of Hughes 

In considering the decomposition of the group SU(3)  =) O(3)  it is useful to consider 
the generators li, i = -1, 0,  1 and qw, p = -2 , .  . . , +2 satisfying the commutation 
relations 

[ l o ,  /*,I = *l*1, [1+1,1-11= 210, [lo,  qw1 = M w ,  

[q+1,4-11= 310, [q+2, q-21= 610, [q*zq~l]= T3l*1,  [q*z, q*11= 0. 

[l+i, qw1=*(-1)”[6-~(p  * l)I1”qw*i, [qo, q*il= T3&+i9 [qo, q*21= 0, 

The li are in fact the generators of the O(3)  subgroup with respect to which the 
qw form a five-dimensional irreducible tensor. 

Hughes (1973a) now takes a combination, OL, of these generators which contains 
the qw to first order only, and requires this operator to satisfy the following commutation 
relations: 

[OL, lo1 = 0 ,  [L2, O,] = 2XOL, 
where x remains to be determined and of course 

18f;(e4n) =m;; (e4n), L’F;; (e4n) = L(L + 1 ) ~ ; ;  (e#n). 
Writing 0, as 

2 0, = &aqo + bl+lq-l + cl-lq+l + dl:lq-2 + el-,qC2 

gives a fifth-order secular equation with solution x k  = k ( 2 L  + k + l), where k = 0, * l ,  
+2, which yields five operators 0: with the property that 

0%;; (e4 R) cc Ff:::M (64 R). 

Now 0; is just the cubic Racah operator, LQL, while the other operators shift 
the angular momentum eigenvalue while leaving the SU(3)  quantum numbers 
unchanged. Note that in general 0; does not commute with either the cubic or quartic 
Racah operators. This means that the new state of angular momentum L + k produced 
by the action of the operator 0; on a state of angular momentum L is in general a 
linear combination of the degenerate states. The degeneracy of the functions with 
the same L, M in a given SU(3) representation can be seen to arise since for example 

Hughes (1973b) gives an algorithm for constructing an orthonormal set of states, 
using products of these operators which leave L unchanged. We wish, instead, to use 
them to calculate the functions gfku(8). To this end we may take M = 0 without loss 
or generality (since gPk”(6) is independent of M )  and we commute the li’s with the 

oz+lo; # 0;. 
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q P ' s ,  giving the final expression for the operators as 

4. Coordinate representation of the shift operators 

where 

(1 -sin 812) a 
b$ - Gf) g 

-i(l +sin 8/2) a -i(l -sin 812) a 
by; +ay!) %+ ( cos 

-i cos 8/2(byB - b;;) a 

sin 812 Gap = 4ibyf -- ae 

+( 2sin 812 +ay!) an,' 
with 

a:' =$(S. la s .  16 - s .  16 s. la ) b t' = i(siasip + sipsia) ,  (a, P + x ,  Y, 2) 

where the .si= are given in terms of the Euler angles in §2. This formula may be 
calculated from the expression (Nyiri and Smorodinsky (1971)) 

Gap = t, a/azp -2; a la r , *  
where 

z = p e''/'[ sin (7) e+n sl + i cos (7) e + n  sz]. 

After tedious algebra the operators 0; can then be obtained in terms of 8, 4, a, 
p and y. We wish to obtain operators as functions of 8 only, so using the expression 
for F:. (e4n) we let the operators act on 2K[(2L + 1 ) 1 1 6 n ~ ] ~ ~ ~ ~ o L K ( ~ ~ e ' " ~ g ~ ~ ~ ( ~ )  
then multiply on the left by [(2L'+ l)/16.rr3]'"D,";;~(R) e-'"'' and integrate. The 
integrations over a, y and 4 are trivial, but the integration over p requires the use 
of the differential relations for the d functions (Talman 1968): 

(-&+m'cosecP-m cot@ d ' m , m ( p ) = - [ ( j - m ) ( j + m + l ) ]  1/2 dmsm+l(p), i 

($-mf cosec P + m  cot p dL,m(P) = [ ( j  +m)( j - m + I)] I f 2  d m ' m - 1  i (p ) .  

) 
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On substituting d-function representations for some simple trignometric forms the 
integrands are all products of three d-functions, which may then be integrated to 
yield a product of 3 - j coefficients. 

We define 
1/2 N n o  hrkw (e )  = [(L - K) ! (L + K) !] g LK ( 6 )  

and then, evaluating the 3 - j coefficients for each operator (Brink and Satchler 1979), 
we obtain the following relation between the functions h?Eo(e): 

where 
A ~ K  = ~ z i L + l ) K  B ~ K  = B I ~ + ~ ) K  C ~ K  = c ~ ( k r + l ) K  

9 7 , 
and 

A ; ~  = $L(L + 1) - K', 

BkK = iK(2L - 1)(2L + 3), 

AiK = 2K, AkK = 1, 

B f K  = -L(L + 2), BkK = 0, 

CkK = -2(L -K + 2)(L - K + l), C f K  = 2(L - K + 2), CkK = 1. 

5. Analytic expressions for small L values 

For some simple cases the defining equation (2) may be solved directly. We define 
the following symbols for convenience: 

A(N,  n )  = d?&/z(O) for N, n integer, N + n even, 

for N, n integer, N + n odd, 

for N, n half-integral, 

for N, n half-integral. 

n) =dE<2n)/2( i -n) /2(e)  

C(N, n) = dn/~+i/4,-(n/*+i/4)(e) 

D(N, n )  = dn/2+1/4,3/4-n/2(e) 
L = 0, K = 0, N + n  even 

L = 1, K = 0, N + n odd 

N/2-1/4 

N/2-1/4 

g E ( e ) a A ( N ,  n) (Zickendraht 1965), 

gE(@=B(N,  n) .  
Then considering the operator 0; gives 

L = l , K = O , N + n  even &;(e) = 0 

as required from Racah's formula giving the number of occurrences of DL in ( h p ) .  

L = l , K = l , N + n  even 

The odd-parity states may be obtained from Zickendraht (1965) as 

e e 
g g ( e ) a ( N + n ) 1 / 2 s i n - C ( N ,  n)-(N-n+1)1/2cos-D(N, n), 4 4 
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L = 1,  K = -1, N + n even 
e e 

g F l  (e)= (N  + n)”’ cos - C(N, n )  + (N - n + 1)l” sin -D(N,  n ) ,  4 4 

L = 1, K = 1, N + n odd 

e e 
g: ( e )  ot (N - n)”’ cos - C(N, -n) + (N  + n + 1)”’ sin - D(N, -n),  4 4 

L = 1, K = -1, N + n odd 

e e 
g F l  (e )  Cc ( N  - n)”’ sin - C(N, -n) - (N  + n + 1)l” cos - D(N, -n). 4 4 

Note that these functions obey the symmetry relation 
Nnw - N,-nw 

g L K  - g L , - K  (8) .  

Considering 0; gives 

L=2,K=O,N+n even g E 1 “ ( 8 ) - W ,  n) ,  
-n 

L=2 ,K=*2 ,N+n even g;4;(8)&( 

Considering 0 : gives 

L = 2 ,  K =0, N + n  odd gg(e)o t (cos  e / 2 ) - ’ ~ ( ~ ,  n) ,  
1 8 2n 

L=2,K=*2,N+n odd ~ F J ~  (e )  oc J6 (-tan - T - 

The L = 2, N + n even state is, in fact, doubly degenerate and since &‘(e) = 0 we 
cannot obtain the second solution using 0: as would usually be done. This is the 
only case where this difficulty occurs, as may be seen, for example, from the SU(3) 
multiplet diagrams in Hughes (1973b). We may get around the problem, in this case, 
since we can use 04 and extract a linearly independent part yielding 

L = 2, K = *2, N + n  even 

n cot 812 2sec 812 a 
n - N (N + 2)  n - N (N + 2)  a 8 ”“ (e) cc ? ( + 

These functions may then be orthogonalised using the Schmidt procedure. The 
operators may then, of course, be reapplied to give the L = 3 and L = 4 states, and 
so on. 

6. Numerical calculation of hyperspherical functions 

Although derivation of the analytical expressions is not difficult, the process is still 
fairly tedious for L much greater than 4, so we look instead for an alternative procedure 
which is more amenable to mechanisation. 
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To achieve this we use the general ansatz suggested by Whitten and Smith (1968) 
in the form 

N 

i 
gLNI;"(e) = [ (L  - K ) !  (L+K)!]- ' l2  aLnVnwLKdin,K/Z (8/2). 

Then using 

and 

nK ' ' j -  n -n  
( A  ) .  -(" ' 

i 

which, given the simple expressions for the 3 - j coefficients with one index equal to 
1, are two sets of simple simultaneous equations relating the ai-l,K and to 
the L Y ~ , K ,  

The function gFk"'(8) for the state of maximum L( = 2 N )  is non-degenerate and 
was calculated by Zickendraht (1965) as 

x 'F1( - ( N  - n ) ,  - (N  - K/2);  1 +K/2  + n ; tan' 814) 
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and using the standard expression for the hypergeometric function, we may write this 
in the general form with 

( 2 j  + 1 ) 2 ~ [ ( 2 ~  - K ) !  ( 2 ~  + K ) !  ~ [ ( j  - n ) !  ( j  + n ) !  ( j  - ~ / 2 ) !  ( j  + K / ~ ) ! ] ” * ( N  - n ) !  
a’K= r(N + j  + 2 )  

(-i)T(m + t + ~ / 2  + n + 1)r[N + j  + 1 - (m + t + K / 2  + n ) ]  7 m ! r !  (N  - n - m)! (N  - K / 2  - m)! r ( m  + 1 + K / 2  + n>( j - n - t ) !  

1 
( j - K / 2 - t ) ! ( t + K / 2 + n ) !  

X 

where the sum is over m and t such that there are no negative factorials. 
To summarise: given the coefficients for the state of maximum L, the states of 

smaller L in a given representation may be generated by successive solution of the 
sets of simultaneous equations derived from the operators 0;’ and 0;’. At each 
stage a set of linearly independent non-zero solutions is extracted and orthonormalised 
using the Schmidt procedure. 

Analyses of the SU(3) representations admitting completely symmetric or antisym- 
metric solutions up to N = 3 are presented in table 1 .  

Table 1. Values of the Q coefficients in the general expansion formula of § 6. 

N n Index L 

0 
1 
1 
1 

312 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

312 

312 

512 
512 
512 

512 
512 
512 
5 12 
512 
512 

512 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 
1 
2 
2 
1 
3 
3 
0 
0 
2 
2 
2 
3 
3 
4 
4 
4 
4 
2 
1 
1 
2 
2 
3 
3 
3 
3 
4 
4 

~~ 

K 

0 
0 
2 
0 
1 
3 
1 
0 
0 
2 
0 
0 
2 
0 
4 
2 
0 
0 
2 
1 
1 
1 
1 
3 
3 
1 
1 
3 
3 

- i Alpha 

0 
1 
1 
0 
312 
312 
312 
0 
2 
1 
0 
2 
2 
1 
2 
1 
0 
2 
2 
312 
512 

512 

512 
312 
512 
312 
512 

312 

312 

0.107 106 18 
-1.000 000 0 
-3.794 133 2 
0.894 427 19 

1.632 993 2 

2.613 614 7 

1.632 993 2 
2.484 236 0 

0.390 360 03 
1.951 800 1 
6.546 536 7 

183.303 03 

3.552 359 7 

-22.677 868 

-0.408 248 29 

-4.810 702 4 

-22.677 868 

-2.138 089 9 
-4.898 979 5 
0.461 380 22 

1.691 056 3 

2.400 000 0 
4.898 919 5 
29.393 817 

-0.919 195 90 

-5.091 168 8 
-1.385 640 6 
-46.008 695 

30.612 463 
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Table 1 (continued) 

N n Index L K i Alpha 

512 
512 
512 
512 
512 
512 
512 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

312 
312 
312 
312 
312 

312 
312 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

4 
4 
5 
5 
5 
5 
5 
1 
1 
2 
2 
2 
2 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
3 
3 
4 
4 
0 
2 
2 
4 
4 
4 
6 
6 
6 
6 

1 
1 
5 
3 
3 
1 
1 
0 
0 
2 
2 
0 
0 
2 
0 
0 
4 
2 
2 
0 
0 
4 
2 
0 
0 
6 
4 
2 
2 
0 
0 
2 
2 
4 
2 
0 
2 
0 
4 
2 
0 
6 
4 
2 
0 

312 
512 
512 

512 
312 
512 

312 

1 
3 
1 
3 
0 
2 
2 
1 
3 
2 
1 
3 
0 
2 
3 
2 
1 
3 
3 
2 
1 
3 
0 
2 
1 
3 
3 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

3.794 733 2 
-9.295 160 0 

1861.143 3 
-147.969 53 
-55.488 574 

54.919 445 
56.051 924 

1.697 056 3 

5.986 651 8 
0.617 213 40 

-0.282 842 71 

-1.571 168 8 

-1.234 426 8 
-7.559 289 5 

2.221 968 2 
-5.184 592 6 
-127.635 85 
4.737 252 2 

-18.050 434 
4.466 324 2 
22.331 621 

113.265 58 

13.211 565 

1884.853 1 

3.5.541 131 
219.853 73 

5.366 563 1 
8.763 560 9 
224.000 00 

-303.923 44 

-79.269 391 

-22 712.285 

-522.345 82 

-109.926 87 

-17.888 544 
-2.529 822 1 

7.155 417 5 
-2.065 591 1 
-238.784 80 

21.574 396 

22 712.285 
-842.931 95 

177.705 66 
-109.926 87 

-11.210 385 

Note to table. 

be obtained from the relations gfSu(6) = gfZz'"(6') and a',,-g = (-l)L-K+3'+n ff ' n.K .  

The alphas are only tabulated for n, K non-negative; the alphas for negative n, K may 

It was chosen to iterate downwards so that a check on the numerical evaluation 
could be made since the L = 0 and L = 1 expansions are known analytically. Alterna- 
tively, of course, one could start from the L = 1 and L = 2 expansions and iterate 
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upwards just to the required L value-this would be more economical for large values 
of N. There should be no significant inaccuracy incurred using these procedures: the 
results in table 1 were the same as the analytical values to the eight significant figures 
printed (calculations were carried out in FORTRAN double precision on a VAX- 
11/780). 

This method is also quite fast: the analysis of the N = 4, n = 0 representation took 
less than 30 secs CPU time on the VAX, and this could be substantially reduced, if 
necessary, by taking advantage of the symmetries of the coefficients and the tri-diagonal 
form of the stimultaneous equations. 

Once the expansion coefficients are available it is, of course, easy to calculate the 
coupling coefficients (3-v coefficients of del Aguila and Doncel 1980) analogous to 
the Wigner 3-j  coefficients. This is done by expanding the products of d functions 
until the integrand is just a Legendre polynomial for which the integral is known. 

7. Conclusion 

In this paper we have derived a coordinate representation of the SU(3) 2 O(3) shift 
operators of Hughes. We have used these to rederive some analytic expressions for 
the hyperspherical harmonics and also developed a method for calculating states of 
every L value in a given representation. Results are presented for some of the 
symmetric SU(3) representations. 

Work is in progress applying these results to the cluster model of Carbon-12. It 
is hoped to model all the excited states up to and including the first 4' state. 
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